CSAT3BH Heated 3-D Sonic Anemometer with Integrated Electronics
Easy-to-Use Sonic Anemometer with Smart Heater Option
Provides continuous, reliable data year-round in harsh environments
clima estudos de caso água estudos de caso energia estudos de caso gas flux and turbulence estudos de caso infraestrutura estudos de caso terra estudos de caso

Visão Geral

The CSAT3BH is ideal for flux customers who operate stations in arctic or tundra ecosystems. This easy-to-use sonic anemometer features a smart heated option that delivers just the right amount of heat to keep the instrument free of ice and snow, enabling you to obtain continuous, reliable flux data in cold environments that typically experience ice accretion on sensors. The CSAT3BH is designed to melt off any ice that has accumulated on the sensor to avoid prolonged periods of data loss.

The CSAT3BH features variable power, only delivering power when needed—as opposed to the common method of providing two-way heating (on/off). Moreover, there are real-time data flags when the heaters are turned on, which is crucial to post-processing your data files.

The CSAT3BH is a heated version of the CSAT3B 3-D Sonic Anemometer with Integrated Electronics. The specifications of the CSAT3BH are the same as the CSAT3B with regard to wind measurements. 

Leia mais

Benefícios e Características

  • Harsh Sonic Environment Option adds conformal coating to transducers to better withstand corrosive environments
  • Two-zone heating to keep both the transducers and body of the sonic anemometer free of snow and ice
  • Heating controller using environmental feedback to ensure power budgeting
  • Streamlined heater integration to ensure maintenance of sonic aerodynamics
  • Integrated data flagging, providing critical information when heaters were operational


CSAT3BH Heated Controller
Connectors on the CSAT3H Heater Controller
Exploded view of the CSAT3BH boom
CSAT3BH with lit status light
CSAT3BH system (items sold separately)

Descrição Técnica

The CSAT3BH provides integrated two-zone smart heating: 

  • Zone 1 consists of the arms and strut.
  • Zone 2 provides heating to all the transducers.

The smart heating uses environmental conditions and a controller to apply variable heating to the sonic anemometer to keep the body and transducers free of ice and snow. The CSAT3BH is designed to prevent ice from forming on the arms and fingers of the system. The block has no heating in it. The CSAT3BH has a separate controller that is used to control the heating algorithm of the sensor. The controller requires a temperature/RH input. There is an ambient temperature and relative humidity sensor that is standard for use with the controller, or the data can be provided through a user-supplied temperature/RH sensor.


The CSAT3BH controller is a polycarbonate enclosure sized 20.32 x 25.4 x 15.24 cm (8 x 10 x 6 in.). The enclosure uses connectors for incoming power, heaters, temperature sensors, temperature/RH, RS-485(2), and USB.


The heaters are controlled on two zones and require 150 W at full power. The controller controls the heaters by increasing or decreasing the voltage to get the appropriate wattage to keep ice from forming on the sensor.


Operating Temperature Range -40 to +50°C (equivalent to 312 to 368 m s-1 in speed of sound)
Outputs ux, uy, uz, Ts (ux, uy, uz are wind components referenced to the anemometer axes; Ts is sonic temperature in degrees Celsius.)
Speed of Sound Determined from three acoustic paths. (Corrected for crosswind effects.)
Wind Direction Range 2.5 to 357.5° in CSAT3B coordinate system (0 to 360° customized)
Filter Bandwidths 5, 10, 20, or 25 Hz
Measurement Path Length 10.0 cm (3.9 in.) vertical; 5.8 cm (2.3 in.) horizontal
Transducer Angle from Horizontal 60 degrees
Transducer Diameter 0.64 cm (0.25 in.)
Transducer Mounting Arm Diameter 0.84 cm (0.33 in.)
Support Arm Diameter 1.59 cm (0.63 in.)
Anemometer Head Weight 1.9 kg (4.2 lb)
Anemometer Dimensions 63.1 x 12.3 x 43.3 cm (24.8 x 4.9 x 17.0 in.)

Power Requirements

Anemometer Voltage Requirement 9.5 to 32 Vdc
Current Required for 10 Hz Measurement Rate
  • 110 mA (@ 12 Vdc)
  • 65 mA (@ 24 Vdc)
Current Required for 100 Hz Measurement Rate
  • 145 mA (@ 12 Vdc)
  • 80 mA (@ 24 Vdc)
Heaters 6.2 A (@ 24 Vdc)
Arms and Strut
  • 0.74 A nominal (@ 24 Vdc)
  • 2.46 A at maximum heating (@ 24 Vdc)
Transducer Fingers
  • 1.13 A nominal (@ 24 Vdc)
  • 3.75 A at maximum heating (@ 24 Vdc)
Total System Power
  • 1.86 A nominal (@ 24 Vdc)
  • 6.2 A at maximum heating (@ 24 Vdc)
Controller Current Required 30 mA (heaters off [quiescent] @ 24 Vdc)

Wind Accuracy

-NOTE- Accuracy specifications assume the following:
  • -30° to +50°C operating range
  • Wind speeds < 30 m s-1
  • Wind angles between ±170°
Maximum Offset Error < ±8.0 cm s-1 (ux, uy), < ±4.0 cm s-1 (uz)
Maximum Gain Error
  • < ±2% of reading (wind vector within ±5° of horizontal)
  • < ±3% of reading (wind vector within ±10° of horizontal)
  • < ±6% of reading (wind vector within ±20° of horizontal)

Measurement Resolution

ux, uy 1 mm s-1 RMS
uz 0.5 mm s-1 RMS
Ts ± 0.002°C RMS (at 25°C)
Wind Direction < 0.058° (ux = uy ≤ 1 m s-1)

Measurement Rates

Data Logger Triggered 1 to 100 Hz
Unprompted Output (to PC) 10, 20, 50, or 100 Hz
Internal Self-Trigger Rate 100 Hz

Measurement Delay

Data Logger Triggered (no filter) 1 trigger period (1 scan interval)
Unprompted Output (no filter) 10 ms
Filtered Output (data-logger-prompted or unprompted to PC)
  • 795 ms (with 5 Hz bandwidth filter)
  • 395 ms (with 10 Hz bandwidth filter)
  • 195 ms (with 20 Hz bandwidth filter)
  • 155 ms (with 25 Hz bandwidth filter)

Internal Monitor Measurements

Update Rate 2 Hz
Inclinometer Accuracy ±1°
Relative Humidity Accuracy
  • ±3% (over 10 to 90% range)
  • ±7% (over 0 to 10% range)
  • ±7% (over 90 to 100% range)
Board Temperature Accuracy ±2°C


-NOTE- Used for data-logger-based data acquisition.
Bit Period 10 µs to 1 ms
Cable Length
  • 7.6 m (25 ft) max (@ 10 µs bit period)
  • 76 m (250 ft) max (@ 1 ms bit period)
Address Range 1 to 14
Bus Clocks per Sample ~200


-NOTE- Used for data-logger-based data acquisition.
Baud Rate 50 kbps to 1 Mbps
Cable Length
  • 15 m (50 ft) max (@ 1 Mbps)
  • 122 m (400 ft) max (@ 250 kbps)
  • 853 m (2800 ft) max (@ 50 kbps)
Address Range 1 to 120
Bus Clocks per Sample ~300


-NOTE- Used for anemometer configuration or PC-based data acquisition.
Baud Rate 9.6 kbps to 115.2 kbps
Cable Length
  • 305 m (1000 ft) max (@ 115.2 kbps)
  • 610 m (2000 ft) max (@ 9.6 kbps)
Bus Clocks per Sample ~500 (ASCII formatted)


-NOTE- Used for anemometer configuration or PC-based data acquisition.
Connection Speed USB 2.0 full speed 12 Mbps
Cable Length 5 m (16.4 ft) maximum


Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.

Data Loggers

Product Compatible Note
CR1000 (retired)
CR200X (retired)
CR206X (retired)
CR211X (retired)
CR216X (retired)
CR295X (retired)
CR9000X (retired)