CR1000 Datalogger de medição e controle
Rugged Datalogger
Multipurpose datalogger for monitoring and control
clima estudos de caso água estudos de caso energia estudos de caso fluxo de gases e turbulência estudos de caso infraestrutura estudos de caso terra estudos de caso

Visão Geral

O CR1000 é nosso datalogger mais amplamente usado. Pode ser usado em ampla gama de funções de medição e controle. Robusto o bastante para condições extremas e confiável suficiente para ambientes remotos, o mesmo se aplica para configurações complexas.

O CR1000 baseia-se em nossos dataloggers CR10X e já foi posto em uso por todo o mundo. Memória aumentada e mais canais de medição o tornam um poderoso componente central em seu sistema de obtenção de dados.

Leia mais

Benefícios e Características

  • Ideal applications include fire weather, mesonet systems, wind profiling, weather stations, air quality, ETo/agriculture, soil moisture, water level/stage, aquaculture, avalanche forecasting, time-domain reflectometry, vehicle testing, SCADA, and water quality
  • Serial communications with serial sensors and devices supported via I/O port pairs
  • Collects and stores data and controls peripherals as the brain of your system
  • Flexible power and communication options make it ideal for remote locations.
  • 4-MB memory can be expanded with add-on memory systems.
  • Supports PakBus, Modbus, SDI-12, and DNP3 protocols
  • Compatible with channel expansion peripherals allowing you to expand your system
  • Program with LoggerNet, PC400, or Short Cut to fit your setup
  • Communicates via various options: TCP/IP, email, FTP, web server.
  • Gas Discharge Tube (GDT) protected inputs
  • Battery-backed clock that ensures accurate time is maintained while data logger is disconnected from battery power
  • Program and control on site with addition of CR1000KD keyboard and display unit.
  • Contains custom ASIC chip that expands pulse count, control port, and serial communications capabilities

imagens

CR1000 isometric view
CR1000 top view
CR1000 right side view
CR1000 left side view
CR1000 front view
CR1000 bottom view
CR1000 back view

Descrição Técnica

The CR1000 consists of a measurement and control module and a wiring panel. This datalogger uses an external keyboard/display and power supply. Low power consumption allows the CR1000 to operate for extended time periods on a battery recharged with a solar panel—eliminating the need for AC power. The CR1000 suspends execution when primary power drops below 9.6 V, reducing the possibility of inaccurate measurements.

The CR1000's module measures sensors, drives direct communications and telecommunications, reduces data, controls external devices, and stores data and programs in on-board, non-volatile storage. The electronics are RF shielded and glitch protected by the sealed, stainless-steel canister. A battery-backed clock assures accurate timekeeping. The module can simultaneously provide measurement and communication functions. The on-board, BASIC-like programming language supports data processing and analysis routines.

The CR1000WP is a black, anodized aluminum wiring panel that is compatible with all CR1000 modules. The wiring panel includes switchable 12 V, redistributed analog grounds (dispersed among analog channels rather than grouped), unpluggable terminal block for 12 V connections, gas-tube spark gaps, and 12 V supply on pin 8 to power our COM-series phone modems and other peripherals. The control module easily disconnects from the wiring panel allowing field replacement without rewiring the sensors.

Originally, the standard CR1000 had 2 MB of data/program storage, and an optional version, the CR1000-4M, had 4 MB of memory. In September 2007, the standard CR1000 started having 4 MB of memory, making the CR1000-4M obsolete. Dataloggers that have a module with a serial number greater than or equal to 11832 will have a 4 MB memory. The 4 MB dataloggers will also have a sticker on the canister stating “4M Memory”.

Especificações

-NOTE- Additional specifications are listed in the CR1000 Specifications Sheet.
Operating Temperature Range
  • -25° to +50°C (standard)
  • -55° to +85°C (extended)
  • Non-condensing environment
Analog Inputs 16 single-ended or 8 differential (individually configured)
Pulse Counters 2
Voltage Excitation Terminals 3 (VX1 to VX3)
Communications Ports
  • CS I/O
  • RS-232
  • Parallel peripheral
Switched 12 Volt 1 terminal
Digital I/O
  • Certain digital ports can be used to count switch closures.
  • 8 I/Os or 4 RS-232 COM
    I/O ports can be paired as transmit and receive for measuring smart serial sensors.
Input Limits ±5 Vdc
Analog Voltage Accuracy ±(0.06% of reading + offset) at 0° to 40°C
ADC 13-bit
Power Requirements 9.6 to 16 Vdc
Real-Time Clock Accuracy ±3 min. per year (Correction via GPS optional.)
Internet Protocols FTP, HTTP, XML, POP3, SMTP, Telnet, NTCIP, NTP
Communication Protocols PakBus, Modbus, DNP3, SDI-12, SDM
Warranty 3 years
Battery-backed SRAM for CPU Usage & Final Storage 4 MB
Idle Current Drain, Average < 1mA (@ 12 Vdc)
Active Current Drain, Average
  • 1 mA (1 Hz sample rate @ 12 Vdc without RS-232 communication)
  • 16 mA (100 Hz sample rate @ 12 Vdc without RS-232 communication)
  • 28 mA (100 Hz sample rate @ 12 Vdc with RS-232 communication)
Dimensions
  • 23.8 x 10.1 x 5.4 cm (9.4 x 4.0 x 2.1 in.)
  • 25.2 x 10.2 x 7.1 cm (9.9 x 4.0 x 2.8 in.) with CFM100 or NL116 attached
Weight 1.0 kg (2.1 lb)

Compatibilidade

Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.

Software

Product Compatible Note
LOGGERNET Version 3.0 or higher
PC200W
PC400 Version 1.2 or higher
PCONNECT (retired) Version 3.1 or higher
PCONNECTCE (retired) Version 2.0 or higher
RTDAQ Version 1.0 or higher
Short Cut
VISUALWEATHER Version 2.0 or higher

Additional Compatibility Information

Sensors

With several channel types, the CR1000 is compatible with nearly every available sensor, including thermocouples, SDI-12 sensors, and 4 to 20 mA sensors (via a terminal input module, such as the CURS100). A custom ASIC chip expands its pulse count, control port, and serial communications capabilities. The CR1000's I/O ports can be paired as transmit and receive, allowing serial communications with serial sensors and devices.

Measurement & Control Peripherals

The CR1000 is compatible with all of our CDMs (requires an SC-CPI), SDMs, multiplexers, vibrating-wire interfaces, terminal input modules, and relays. 

Communications

The CR1000 communicates with a PC via direct connect, Ethernet interfaces, multidrop modems, short-haul modems, phone modems (land line, digital cellular, and voice-synthesized), RF telemetry, and satellite transmitters (Argos, Iridium, and Inmarsat).

Data can be viewed on the CR1000KD Keyboard Display, the CD100 Mountable Display with Keyboard, an iOS or Android device (requires LoggerLink), CD295 DataView II Display, or a user-supplied PDA (PConnect or PConnectCE software required).

Compatible external data storage devices are the CFM100, NL115, and SC115.

Enclosures

The CR1000 and its power supply can be housed in any of our standard enclosures. 

Power

Any 12 Vdc source can power the CR1000 datalogger. Power supplies commonly used with the CR1000 are the BPALK, PS150, and PS200. The BPALK provides eight non-rechargeable D-cell alkaline batteries with a 7.5 Ah rating at 20°C.

Both the PS150 and PS200 consist of a sealed rechargeable 7 Ah battery and a charging regulator. Their battery should be connected to a charging source (either a wall charger or solar panel). These two power supplies differ in their charging regulator. The PS150 has a standard regulator and the PS200 has a micro-controller-based smart regulator. The PS200's regulator provides two-step constant voltage charging and temperature compensation that optimize battery charging and increases the battery’s life.

Also available are the BP12 and BP24 battery packs, which provide nominal ratings of 12 and 24 Ah, respectively. These batteries should be connected to a regulated charging source (e.g., a CH100 or CH200 connected to a unregulated solar panel or wall charger).

Software

CRBasic, the CR1000's full programming language, supports simple or complex programming and many onboard data reduction processes. Compatible software includes:

  • Short Cut
  • PC200W
  • PC400 (version 1.2 or higher)
  • LoggerNet (version 3.0 or higher)
  • RTDAQ (version 1.0 or higher)
  • PConnect (version 3.1 or higher)
  • PConnectCE (version 2.0 or higher)
  • VisualWeather (version 2.0 or higher)

Downloads

CR1000 OS v.32.03 (5.10 MB) 13-08-2018

Execution of this download installs the CR1000 Operating System and Compiler on your computer.  It also updates the CR1000 support files for the CRBasic Editor.  

Note: This OS has crossed the 2 Meg CR1000 size limit for remote download.  The OS must be downloaded to the 2 Meg CR1000 via direct connect with the Device Configuration Utility.  All OS download methods are supported by the 4 Meg CR1000.

Upgrading from versions prior to version 28 of the Operating System will reset the datalogger’s CPU drive.  This is due to a change in the format of the file system from FAT16 to FAT32.  In order for the datalogger to operate correctly, as part of the upgrade, the CPU drive is formatted to FAT32.  Any programs stored and running from the CPU drive will be lost.  It is not recommended to update the datalogger’s Operating System over a remote connection where program control regulates the communication equipment (turning it on or off, etc.).  In these cases, an on-site visit and a backup using DevConfig’s backup utility is necessary to update the datalogger’s Operating System.

Watch the Video Tutorial: Sending an OS to a Local Datalogger.

In all cases where the datalogger is being updated from an Operating System prior to 28, the use of DevConfig’s backup utility is recommended due to the CPU drive being formatted using the new FAT32 format.

Visualize o Histórico de Revisões

Device Configuration Utility v.2.21 (41.5 MB) 22-05-2019

A software utility used to download operating systems and set up Campbell Scientific hardware. Also will update PakBus Graph and the Network Planner if they have been installed previously by another Campbell Scientific software package.

Supported Operating Systems:

Windows 10, 8.1, 8, and 7 (Both 32 and 64 bit)

Visualize o Histórico de Revisões

Perguntas Frequentes Relacionadas

Number of FAQs related to CR1000: 183

Expandir todosRecolher todos

  1. Recalibration of the CR1000 is recommended every three years.

  2. The CR1000 and CR1000X will be sold concurrently for no less than two years. We anticipate the CR1000 will be retired in December of 2019 and will be supported until December of 2029. 

  3. Although there are significant additions to the CR1000X program instructions that are not available in the CR1000, in most cases, you can load your program written for the CR1000 to a CR1000X with minor instruction changes. The most notable of the minor instruction changes is in the analog measurement instructions. For more information, see the "Replacing Your CR1000 Data Logger with a CR1000X: What You Should Know" blog article

  4. When idle, the CR1000, CR6, and CR1000X consume less than 1 mA @ 12Vdc. Similar to the CR6, the CR1000X has a much faster processor that requires more power when up and running. As such, there will be higher current draws during active measurements, serial communications, or when plugged into a PC via USB or Ethernet.

    It may be helpful to think of the CR6 and CR1000X as being built on the same "platform."

  5. A practical maximum is to connect one multiplexer per every two control terminals on the data logger. Control terminals can be shared between multiplexers to increase the number of connected multiplexers. Sharing terminals, however, requires more complex wiring and programming. Users who would like to connect more than one multiplexer per every two control terminals are advised to contact a sales or support engineer at Campbell Scientific for assistance.

  6. The FileManage() instruction can be used to hide files on a data logger. The following are some important reminders:

    • Hidden files will not be displayed and therefore are not accessible via File Control, FTP, HTTP, etc.
    • Hidden CR and DLD program files and those specified by the Include instruction can be used by the data logger.
    • Hidden files can be accessed under program control using the FileOpen(), FileRead(), and FileWrite() instructions.
    • Hidden files can be further protected by encrypting them with the CRBasic Editor or the FileEncrypt() instruction. 
  7. The number of data tables that can be defined is limited to 30.
  8. Many commonly used checksum algorithms are supported with the CheckSum() instruction in CRBasic. Other checksums may be implemented using the available bitwise operators. The complexity of the implementation depends on the particular checksum.
  9. Yes. Create a multidrop network with an MD485 between the CR5000, the CR1000, and the digital modem. See the “Digital Cellular Modem to MD485 Network” appendix item in the MD485 instruction manual

Estudos de Caso

Flemish Pile Monitoring
Cofely Fabricom NV/SA (GDFSuez) has utilized Campbell Scientific equipment on numerous projects in both the......Leia mais
Chile: Solar-Energy Assessment
Solar energy resource assessment projects are critical to the successful siting of solar thermal power......Leia mais
Washington AgWeatherNet
Washington State University’s AgWeatherNet (AWN) is a large automated network composed almost entirely of Campbell......Leia mais
Toronto, Canada: Green Roofs
The Problem—How to optimize green-roof performance The University of Toronto's Green Roof Innovation Testing Laboratory (GRIT......Leia mais
Florida: Protecting an Endangered Species’ Habitat
The South Florida Water Management District (SFWMD) has a mission to manage and protect the......Leia mais
South Dakota: Canal-Based Irrigation System
The semiarid region just north of the Black Hills in western South Dakota has vast......Leia mais
Arkansas: Flood Warning
Hot Springs, Arkansas, is a history-rich city located adjacent to Hot Springs National Park. The......Leia mais
Korea: Damage from Freezing Roads
Korea Expressway Corporation (KEC) was established in 1969 to construct and manage expressways throughout South......Leia mais

Artigos e Comunicados de Imprensa