CSAT3B 3-D Sonic Anemometer with Integrated Electronics
Precision Measurements
Designed for flux and other turbulence research projects
clima estudos de caso água estudos de caso energia estudos de caso gas flux and turbulence estudos de caso infraestrutura estudos de caso terra estudos de caso

Visão Geral

Campbell Scientific’s CSAT3B 3-D Sonic Anemometer is an update and replacement to the original CSAT3, and remains the 3-D sonic anemometer of choice for eddy-covariance measurements. It has an aerodynamic design, a 10 cm vertical measurement path, operates in a pulsed acoustic mode, and withstands exposure to harsh weather conditions. Three orthogonal wind components (ux, uy, uz) and the sonic temperature (Ts) are measured and output at a maximum rate of 100 Hz.

The most conspicuous innovation of the new design is the elimination of the electronics box. Instead, the electronics are packaged inside the mounting block of the CSAT3B head. This design feature makes installation easier and offers greater flexibility in instrument placement.

Measurements can be triggered from three sources:

  • Data logger SDM command
  • Data logger CPI command
  • CSAT3B internal clock

The SDM and CPI protocols both support mechanisms for synchronizing multiple CSAT3Bs.

Benefícios e Características

  • New conformal coating helps protect sonic transducers in corrosive environments
  • Integrated electronics that provide easy mounting of a single piece of hardware
  • Integrated inclinometer
  • High-precision measurements ideal for turbulence and eddy-covariance studies
  • An improved design with a thin, aerodynamic support strut close to the ends of the sensor arms, creating greater rigidity and improved accuracy of sonic temperature
  • Data logger sampling supported for any frequency between 1 and 100 Hz
  • New CPI communications for more robust, higher bandwidth measurements
  • Multiple communication options including SDM, CPI, USB, and RS-485
  • Internal temperature and humidity measurements with easily replaced desiccant
  • Version 5 algorithm for calculating data outputs; combines the signal sensitivity of version 3 with the rain performance of version 4
  • Includes options to filter high frequencies for applications requiring analysis of non-aliased spectra

imagens


Especificações

Sensor 3-dimensional sonic anemometer
Measurement Description Highest-quality wind speed and direction
Operating Temperature Range -40 to +50°C (equivalent to 305 to 368 m s-1 in speed of sound)
Outputs ux, uy, uz, Ts (ux, uy, uz are wind components referenced to the anemometer axes; Ts is sonic temperature in degrees Celsius.)
Signal Type/Output SDM, CPI, USB, RS-485
Speed of Sound Determined from three acoustic paths. (Corrected for crosswind effects.)
Wind Direction Range 2.5 to 357.5° in CSAT3B coordinate system (0 to 360° customized)
Range ± 65 m s–1 (full-scale wind)
Filter Bandwidths 5, 10, or 25 Hz
Measurement Path Length 10.0 cm (3.9 in.) vertical; 5.8 cm (2.3 in.) horizontal
Transducer Angle from Horizontal 60 degrees
Transducer Diameter 0.64 cm (0.25 in.)
Transducer Mounting Arm Diameter 0.84 cm (0.33 in.)
Support Arm Diameter 1.59 cm (0.63 in.)
Anemometer Head Weight 1.45 kg (3.2 lb)
Anemometer Dimensions 60.64 x 12.2 x 43.0 cm (23.87 x 4.8 x 16.9 in.)

Wind Accuracy

-NOTE- Accuracy specifications assume the following:
  • -40° to +50°C operating range
  • Wind speeds < 30 m s-1
  • Wind angles between ±170°
Maximum Offset Error < ±8.0 cm s-1 (ux, uy), < ±4.0 cm s-1 (uz)
Maximum Gain Error
  • < ±2% of reading (wind vector within ±5° of horizontal)
  • < ±3% of reading (wind vector within ±10° of horizontal)
  • < ±6% of reading (wind vector within ±20° of horizontal)

Measurement Resolution

ux, uy 1 mm s-1 rms
uz 0.5 mm s-1 rms
Ts 0.002°C RMS (at 25°C)
Wind Direction < 0.058° (ux = uy ≤ 1 m s-1)

Measurement Rates

Data Logger Triggered 1 to 100 Hz
Unprompted Output (to PC) 10, 20, 50, or 100 Hz
Internal Self-Trigger Rate 100 Hz

Measurement Delay

Data Logger Triggered (no filter) 1 trigger period (1 scan interval)
Unprompted Output (no filter) 10 ms
Filtered Output (data-logger-prompted or unprompted to PC)
  • 795 ms (with 5 Hz bandwidth filter)
  • 395 ms (with 10 Hz bandwidth filter)
  • 155 ms (with 25 Hz bandwidth filter)

Internal Monitor Measurements

Update Rate 2 Hz
Inclinometer Accuracy ±1°
Relative Humidity Accuracy
  • ±3% (over 10 to 90% range)
  • ±7% (over 0 to 10% range)
  • ±7% (over 90 to 100 % range)
Board Temperature Accuracy ±2°C

SDM

-NOTE- Used for data-logger-based data acquisition.
Bit Period 10 µs to 1 ms
Cable Length
  • 7.6 m (25 ft) max (@ 10 µs bit period)
  • 76 m (250 ft) max (@ 1 ms bit period)
Address Range 1 to 14
Bus Clocks per Sample ~200

CPI

-NOTE- Used for data-logger-based data acquisition.
Baud Rate 50 kbps to 1 Mbps
Cable Length
  • 15 m (50 ft) max (@ 1 Mbps)
  • 122 m (400 ft) max (@ 250 kbps)
  • 853 m (2800 ft) max (@ 50 kbps)
Address Range 1 to 120
Bus Clocks per Sample ~300

RS-485

-NOTE- Used for configuration or PC-based data acquisition.
Baud Rate 9.6 kbps to 115.2 kbps
Cable Length
  • 305 m (1000 ft) max (@ 115.2 kbps)
  • 610 m (2000 ft) max (@ 9.6 kbps)
Bus Clocks per Sample ~500 (ASCII formatted)

USB

-NOTE- Used for configuration or PC-based data acquisition.
Connection Speed USB 2.0 full speed 12 Mbps
Cable Length 5 m (16.4 ft) maximum

Power Requirements

Voltage Supply 9.5 to 32 Vdc
Current at 10 Hz Measurement Rate
  • 110 mA (@ 12 Vdc)
  • 65 mA (@ 24 Vdc)
Current at 100 Hz Measurement Rate
  • 145 mA (@ 12 Vdc)
  • 80 mA (@ 24 Vdc)

Compatibilidade

Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.

Data Loggers

Product Compatible Note
CR1000 (retired)
CR1000X
CR300
CR3000 (retired)
CR310
CR350
CR6
CR800 (retired)
CR850 (retired)

Downloads

CSAT3B Example Programs v.1 (4 kB) 20-10-2020

Three example programs. 

Simple SDM Program: SDM communications are used to collect data from a single CSAT3B.

Simple CPI Program: CPI communications are used to collect data from a single CSAT3B.

Advanced CPI Program: A single CSAT3B is properly configured and CPI communications are used to collect the data.

Perguntas Frequentes Relacionadas

Number of FAQs related to CSAT3B: 16

Expandir todosRecolher todos

  1. No. The offset is a function of temperature and time. Once a year, spot-check the sonic anemometer wind offset using the procedure outlined in the CSAT3B instruction manual. If the measured offset is outside the specification, return the sensor to the factory for calibration. To request a return material authorization (RMA) number, follow the steps listed on our Repair and Calibration page. 

  2. Campbell Scientific does not offer any mounting booms or hardware that enable easy and frequent positioning of the sonic anemometer sensor head. This type of hardware must be provided by the user.

  3. Ultrasonic anemometers are unable to make measurements if the sonic path is blocked. The path may become blocked by water that puddles on the lower transducer face or droplets that hang from the upper transducers. Sonic wicks, which come with all sonics, can be placed on the transducers to wick away moisture from the faces of the transducers. Ensure that these wicks are removed during cold conditions to prevent ice from building up around them.

  4. The CSAT3A or CSAT3B is calibrated over the temperature range of -30° to +50°C. The sonic anemometer operating temperature range can be shifted by 10 degrees to cover the range of -40° to +40°C. For low-temperature applications, it may be more appropriate to consider a heated version of our sonic anemometers.

    The instrument will continue to operate outside the calibrated temperature range until the signal becomes too weak; however, the proper calibration will not be applied to the measurements because the calibration file only spans the specified temperature range.

  5. The CSAT3A, CSAT3AH, CSAT3B, and CSAT3BH—like other sonic anemometers—measure wind speed along the sonic path using ultrasonic signals. If the salt spray blocks the sonic path, the sonic anemometer will not be able to make measurements. The same is true if a thick layer of salt is deposited on the transducer faces.

  6. The sonic anemometer measures three-dimensional wind in a right-handed Cartesian coordinate system. From these measurements, use trigonometry to compute the wind flow angle, horizontal angle, and wind speed.

  7. No. The sonic anemometer does not report time with the wind measurements. A time stamp will be assigned to the wind data by the data-acquisition system—either a data logger or a PC.

  8. The CSAT3A, CSAT3AH, CSAT3B, and CSAT3BH are calibrated over temperature for the effects of transducer delays on the wind speed, and to a lesser extent, for the speed of sound measurements.

    There is no NIST-traceable standard for ultrasonic anemometers.

  9. Yes. If the matching layer is damaged or missing, return the sonic anemometer to the factory for repair. Follow the steps listed on our Repair and Calibration page to request a return material authorization (RMA) number. 


Artigos e Comunicados de Imprensa