Services Available | |
---|---|
Repair | Yes |
Calibration | Yes |
Free Support | Yes |
The CR3000 Micrologger® supports complex applications with many sensors. It is fast and powerful enough to handle extended eddy-covariance systems with full energy-balance systems. Multiple CR3000s can be configured as a network or units can be deployed individually.
Designed for stand-alone operation in harsh, remote environments. The CR3000 consists of a compact, integrated package with a built-in power supply, a 128-by-64-pixel backlit graphical or eight-line numeric display, and a 16-character keyboard.
Leia maisHoused in a portable, self-contained package, the CR3000 Micrologger® consists of measurement and control electronics, communication ports, 16-character keyboard, display, power supply, and carrying handle. The integrated display shows 8 lines x 21 characters (64 x 128 pixels).
The CR3000 has a choice of three power-supply base options (alkaline, rechargeable, or no battery). Low power consumption allows the Micrologger® to operate for extended time periods on its battery recharged with a solar panel—eliminating the need for AC power. It suspends execution when primary power drops below 9.6 V, reducing the possibility of inaccurate measurements.
The on-board operating system includes measurement, processing, and output instructions for programming the data logger. The programming language, CRBasic, uses a BASIC-like syntax. Measurement instructions specific to bridge configurations, voltage outputs, thermocouples, and pulse/frequency signals are included. Processing instructions support algebraic, statistical, and transcendental functions for on-site processing. Output instructions process data over time and control external devices.
-NOTE- | Note: Additional specifications are listed in the CR3000 Specifications Sheet. |
Operating Temperature Range |
|
Maximum Scan Rate | 100 Hz |
Analog Inputs | 28 single-ended or 14 differential (individually configured) |
Pulse Counters | 4 |
Voltage Excitation Terminals | 4 (VX1 to VX4) |
Communications Ports |
|
Switched 12 Volt | 2 terminals |
Digital I/O |
|
Input Limits | ±5 Vdc |
Analog Voltage Accuracy | ±(0.04% of reading + offset) at 0° to 40°C |
ADC | 16-bit |
Power Requirements | 10 to 16 Vdc |
Real-Time Clock Accuracy | ±3 min. per year (Correction via GPS optional.) |
Internet Protocols | FTP, HTTP, XML POP3, SMTP, Telnet, NTCIP, NTP, |
Communication Protocols | PakBus, Modbus, DNP3, SDI-12, SDM |
Idle Current Drain, Average | 2 mA (@ 12 Vdc) |
Active Current Drain, Average |
|
Dimensions |
|
Weight |
|
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
Product | Compatible | Note |
---|---|---|
LoggerNet | Version 3.2 or higher | |
PC200W (retired) | ||
PC400 | Version 1.3 or higher | |
PCONNECT (retired) | Version 3.2 or higher | |
PCONNECTCE (retired) | Version 2.1 or higher | |
RTDAQ | Version 1.0 or higher | |
Short Cut | ||
VISUALWEATHER | Version 2.0 or higher |
With several channel types, the CR3000 is compatible with nearly every available sensor, including thermocouples, SDI-12 sensors, and 4 to 20 mA sensors. A custom ASIC chip expands its pulse count, control port, and serial communications capabilities. The CR3000's I/O ports can be paired as transmit and receive, allowing serial communications with serial sensors and devices.
The CR3000 is compatible with all of our CDMs (requires an SC-CPI), SDMs, multiplexers, vibrating-wire interfaces, terminal input modules, and relays.
The CR3000 communicates with a PC via direct connect, Ethernet interfaces, multidrop modems, short-haul modems, phone modems (land line, digital cellular, and voice-synthesized), RF telemetry, and satellite transmitters (Argos, Iridium, and Inmarsat).
Data can be viewed on its onboard keyboard display, user-supplied iOS or Android device (requires LoggerLink), CD295 DataView II Display, or a user-supplied PDA (PConnect or PConnectCE software required).
Compatible external data storage devices are the CFM100, NL115, and SC115.
The CR3000 can be housed in an ENC12/14, ENC14/16, ENC16/18, ENC24/30, or ENC24/30S enclosure.
The CR3000 is typically powered by its on-board alkaline or rechargeable power supply (see Ordering Info). When the rechargeable power supply is used, its internal 7 A h sealed rechargeable battery needs be charged via a vehicle (requires the DCDC18R), solar panel, or ac wall charger.
The CR3000 can also come with a low-profile base that requires a user-supplied dc source. It is preferred when the system’s power consumption needs a larger capacity battery or when it’s advantageous for the Micrologger® to be thinner and lighter.
CRBasic, the CR3000's full programming language, supports simple or complex programming and many on-board data reduction processes.
Execution of this download installs the CR3000 Operating System and Compiler on your computer. It also updates the CR3000 support files for the CRBasic Editor.
Note: The Device Configuration Utility is used to upload the included operating system to the datalogger.
Upgrading from versions prior to version 28 of the Operating System will reset the datalogger’s CPU drive. This is due to a change in the format of the file system from FAT16 to FAT32. In order for the datalogger to operate correctly, as part of the upgrade, the CPU drive is formatted to FAT32. Any programs stored and running from the CPU drive will be lost. It is not recommended to update the datalogger’s Operating System over a remote connection where program control regulates the communication equipment (turning it on or off, etc.). In these cases, an on-site visit and a backup using DevConfig’s backup utility is necessary to update the datalogger’s Operating System.
Watch the Video Tutorial: Sending an OS to a Local Datalogger.
In all cases where the datalogger is being updated from an Operating System prior to 28, the use of DevConfig’s backup utility is recommended due to the CPU drive being formatted using the new FAT32 format.
A software utility used to download operating systems and set up Campbell Scientific hardware. Also will update PakBus Graph and the Network Planner if they have been installed previously by another Campbell Scientific software package.
Supported Operating Systems:
Windows 11 or 10 (Both 32 and 64 bit)
Number of FAQs related to CR3000: 160
Expandir todosRecolher todos
Yes, but only if all the other data loggers are PakBus devices, such as the CR800, CR850, and CR1000.
Yes, using the following steps:
The CR3000 can measure analog voltages over the range of ±5 V. Sensors with outputs beyond that range may have their signals conditioned with voltage dividers to be compatible with the CR3000. The CR3000 may supply power to sensors through various channels: voltage and current excitation, continuous analog output, regulated 5 V, unregulated 12 V, and switched 12 V.
There are eight multifunction control terminals on a CR3000. These terminals can act as digital inputs, digital output control, or as transmit/receive for serial communications.
No, the hardware is the same. The –XT version has been tested over the range of -40 to +85 degrees Celsius.
Yes. A local PakBus network can be created using a single COM─COM4 serial port on each CR3000.
Bridge measurement instructions [BrFull(), BrFull6W(), BrHalf(), BrHalf3W(), and BrHalf4W()] and the ExciteV() instruction have a parameter called ExmV that is used to specify the voltage used for excitation. This is in the range of ±5000 mV.
Synchronizing each data logger to computer time through the data logger support software is the easiest way and will work well for many applications. In LoggerNet an automated clock check may be set up that resynchronizes whenever a user-defined clock deviation is detected. In high-speed applications it may be desirable to attach a GPS device to each data logger and use the GPS instruction to set the data logger clock.
The time will vary depending on the average current drain and environmental conditions. Generally speaking, if the battery has not been discharged more than 20% of capacity, a wall charger should only take two to three hours to fully recharge the battery.